9,415 research outputs found

    Survival ensembles by the sum of pairwise differences with application to lung cancer microarray studies

    Full text link
    Lung cancer is among the most common cancers in the United States, in terms of incidence and mortality. In 2009, it is estimated that more than 150,000 deaths will result from lung cancer alone. Genetic information is an extremely valuable data source in characterizing the personal nature of cancer. Over the past several years, investigators have conducted numerous association studies where intensive genetic data is collected on relatively few patients compared to the numbers of gene predictors, with one scientific goal being to identify genetic features associated with cancer recurrence or survival. In this note, we propose high-dimensional survival analysis through a new application of boosting, a powerful tool in machine learning. Our approach is based on an accelerated lifetime model and minimizing the sum of pairwise differences in residuals. We apply our method to a recent microarray study of lung adenocarcinoma and find that our ensemble is composed of 19 genes, while a proportional hazards (PH) ensemble is composed of nine genes, a proper subset of the 19-gene panel. In one of our simulation scenarios, we demonstrate that PH boosting in a misspecified model tends to underfit and ignore moderately-sized covariate effects, on average. Diagnostic analyses suggest that the PH assumption is not satisfied in the microarray data and may explain, in part, the discrepancy in the sets of active coefficients. Our simulation studies and comparative data analyses demonstrate how statistical learning by PH models alone is insufficient.Comment: Published in at http://dx.doi.org/10.1214/10-AOAS426 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Evolutionary multiplayer games on graphs with edge diversity

    Full text link
    Evolutionary game dynamics in structured populations has been extensively explored in past decades. However, most previous studies assume that payoffs of individuals are fully determined by the strategic behaviors of interacting parties and social ties between them only serve as the indicator of the existence of interactions. This assumption neglects important information carried by inter-personal social ties such as genetic similarity, geographic proximity, and social closeness, which may crucially affect the outcome of interactions. To model these situations, we present a framework of evolutionary multiplayer games on graphs with edge diversity, where different types of edges describe diverse social ties. Strategic behaviors together with social ties determine the resulting payoffs of interactants. Under weak selection, we provide a general formula to predict the success of one behavior over the other. We apply this formula to various examples which cannot be dealt with using previous models, including the division of labor and relationship- or edge-dependent games. We find that labor division facilitates collective cooperation by decomposing a many-player game into several games of smaller sizes. The evolutionary process based on relationship-dependent games can be approximated by interactions under a transformed and unified game. Our work stresses the importance of social ties and provides effective methods to reduce the calculating complexity in analyzing the evolution of realistic systems.Comment: 50 pages, 7 figure
    • …
    corecore